Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.575
Filtrar
1.
PeerJ ; 12: e17102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560475

RESUMO

The standard theory of evolution proposes that mutations cause heritable variations, which are naturally selected, leading to evolution. However, this mutation-led evolution (MLE) is being questioned by an alternative theory called plasticity-led evolution (PLE). PLE suggests that an environmental change induces adaptive phenotypes, which are later genetically accommodated. According to PLE, developmental systems should be able to respond to environmental changes adaptively. However, developmental systems are known to be robust against environmental and mutational perturbations. Thus, we expect a transition from a robust state to a plastic one. To test this hypothesis, we constructed a gene regulatory network (GRN) model that integrates developmental processes, hierarchical regulation, and environmental cues. We then simulated its evolution over different magnitudes of environmental changes. Our findings indicate that this GRN model exhibits PLE under large environmental changes and MLE under small environmental changes. Furthermore, we observed that the GRN model is susceptible to environmental or genetic fluctuations under large environmental changes but is robust under small environmental changes. This indicates a breakdown of robustness due to large environmental changes. Before the breakdown of robustness, the distribution of phenotypes is biased and aligned to the environmental changes, which would facilitate rapid adaptation should a large environmental change occur. These observations suggest that the evolutionary transition from mutation-led to plasticity-led evolution is due to a developmental transition from robust to susceptible regimes over increasing magnitudes of environmental change. Thus, the GRN model can reconcile these conflicting theories of evolution.


Assuntos
Evolução Biológica , Redes Reguladoras de Genes , Redes Reguladoras de Genes/genética , Mutação/genética , Fenótipo
2.
Biosystems ; 238: 105200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565418

RESUMO

One of the prime reasons of increasing breast cancer mortality is metastasizing cancer cells. Owing to the side effects of clinically available drugs to treat breast cancer metastasis, it is of utmost importance to understand the underlying biogenesis of breast cancer tumorigenesis. In-silico identification of potential RNAs might help in utilizing the miR-27 family as a therapeutic target in breast cancer. The experimentally verified common interacting mRNAs for miR27 family are retrieved from three publicly available databases- TargetScan, miRDB and miRTarBase. Finally on comparing the common genes with HCMDB and GEPIA data, four breast cancer-associated differentially expressed metastatic mRNAs (GATA3, ENAH, ITGA2 and SEMA4D) are obtained. Corresponding to the miR27 family and associated mRNAs, interacting drugs are retrieved from Sm2mir and CTDbase, respectively. The interaction network-based approach was utilized to obtain the hub RNAs and triad modules by employing the 'Cytohubba' and 'MClique' plugins, respectively in Cytoscape. Further, sample-, subclass- and promoter methylation-based expression analyses reveals GATA3 and ENAH to be the most significant mRNAs in breast cancer metastasis having >10% genetic alteration in both METABRIC Vs TCGA datasets as per their oncoprint analysis via cBioPortal. Additionally, survival analysis in Oncolnc reveals SEMA4D as survival biomarker. Interactions among the miR27 family, their target mRNAs and drugs interacting with miRNAs and mRNAs can be extensively explored in both in-vivo and in-vitro setups to assess their therapeutic potential in the diminution of breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Biomarcadores Tumorais/genética , MicroRNAs/genética , RNA Mensageiro/genética
3.
NPJ Syst Biol Appl ; 10(1): 35, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565850

RESUMO

Gene regulatory mechanisms (GRMs) control the formation of spatial and temporal expression patterns that can serve as regulatory signals for the development of complex shapes. Synthetic developmental biology aims to engineer such genetic circuits for understanding and producing desired multicellular spatial patterns. However, designing synthetic GRMs for complex, multi-dimensional spatial patterns is a current challenge due to the nonlinear interactions and feedback loops in genetic circuits. Here we present a methodology to automatically design GRMs that can produce any given two-dimensional spatial pattern. The proposed approach uses two orthogonal morphogen gradients acting as positional information signals in a multicellular tissue area or culture, which constitutes a continuous field of engineered cells implementing the same designed GRM. To efficiently design both the circuit network and the interaction mechanisms-including the number of genes necessary for the formation of the target spatial pattern-we developed an automated algorithm based on high-performance evolutionary computation. The tolerance of the algorithm can be configured to design GRMs that are either simple to produce approximate patterns or complex to produce precise patterns. We demonstrate the approach by automatically designing GRMs that can produce a diverse set of synthetic spatial expression patterns by interpreting just two orthogonal morphogen gradients. The proposed framework offers a versatile approach to systematically design and discover complex genetic circuits producing spatial patterns.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Redes Reguladoras de Genes/genética
4.
NPJ Syst Biol Appl ; 10(1): 38, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594351

RESUMO

Acute myeloid leukemia (AML) is characterized by uncontrolled proliferation of poorly differentiated myeloid cells, with a heterogenous mutational landscape. Mutations in IDH1 and IDH2 are found in 20% of the AML cases. Although much effort has been made to identify genes associated with leukemogenesis, the regulatory mechanism of AML state transition is still not fully understood. To alleviate this issue, here we develop a new computational approach that integrates genomic data from diverse sources, including gene expression and ATAC-seq datasets, curated gene regulatory interaction databases, and mathematical modeling to establish models of context-specific core gene regulatory networks (GRNs) for a mechanistic understanding of tumorigenesis of AML with IDH mutations. The approach adopts a new optimization procedure to identify the top network according to its accuracy in capturing gene expression states and its flexibility to allow sufficient control of state transitions. From GRN modeling, we identify key regulators associated with the function of IDH mutations, such as DNA methyltransferase DNMT1, and network destabilizers, such as E2F1. The constructed core regulatory network and outcomes of in-silico network perturbations are supported by survival data from AML patients. We expect that the combined bioinformatics and systems-biology modeling approach will be generally applicable to elucidate the gene regulation of disease progression.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Redes Reguladoras de Genes/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Carcinogênese
5.
Cell Genom ; 4(4): 100538, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565144

RESUMO

Nearly all trait-associated variants identified in genome-wide association studies (GWASs) are noncoding. The cis regulatory effects of these variants have been extensively characterized, but how they affect gene regulation in trans has been the subject of fewer studies because of the difficulty in detecting trans-expression quantitative loci (eQTLs). We developed trans-PCO for detecting trans effects of genetic variants on gene networks. Our simulations demonstrate that trans-PCO substantially outperforms existing trans-eQTL mapping methods. We applied trans-PCO to two gene expression datasets from whole blood, DGN (N = 913) and eQTLGen (N = 31,684), and identified 14,985 high-quality trans-eSNP-module pairs associated with 197 co-expression gene modules and biological processes. We performed colocalization analyses between GWAS loci of 46 complex traits and the trans-eQTLs. We demonstrated that the identified trans effects can help us understand how trait-associated variants affect gene regulatory networks and biological pathways.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Fenótipo
6.
Biotechnol Adv ; 72: 108345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38513775

RESUMO

Transcriptional regulators generate connections between biological signals and genetic outputs. They are used robustly for sensing input signals in building genetic circuits. However, each regulator can only generate a fixed connection, which generates constraints in linking multiple signals for more complex processes. Recent studies discovered that a domain swapping strategy can be applied to various regulator families to create modular regulators for new signal-output connections, significantly broadening possibilities in circuit design. Here we review the development of this emerging strategy, the use of resulting modular regulators for creating novel genetic response behaviors, and current limitations and solutions for further advancing the design of modular regulators.


Assuntos
Redes Reguladoras de Genes , Humanos , Redes Reguladoras de Genes/genética
7.
Prog Neurobiol ; 235: 102599, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522610

RESUMO

Gene regulation in the hippocampus is fundamental for its development, synaptic plasticity, memory formation, and adaptability. Comparisons of gene expression among different developmental stages, distinct cell types, and specific experimental conditions have identified differentially expressed genes contributing to the organization and functionality of hippocampal circuits. The NEIL3 DNA glycosylase, one of the DNA repair enzymes, plays an important role in hippocampal maturation and neuron functionality by shaping transcription. While differential gene expression (DGE) analysis has identified key genes involved, broader gene expression patterns crucial for high-order hippocampal functions remain uncharted. By utilizing the weighted gene co-expression network analysis (WGCNA), we mapped gene expression networks in immature (p8-neonatal) and mature (3 m-adult) hippocampal circuits in wild-type and NEIL3-deficient mice. Our study unveiled intricate gene network structures underlying hippocampal maturation, delineated modules of co-expressed genes, and pinpointed highly interconnected hub genes specific to the maturity of hippocampal subregions. We investigated variations within distinct gene network modules following NEIL3 depletion, uncovering NEIL3-targeted hub genes that influence module connectivity and specificity. By integrating WGCNA with DGE, we delve deeper into the NEIL3-dependent molecular intricacies of hippocampal maturation. This study provides a comprehensive systems-level analysis for assessing the potential correlation between gene connectivity and functional connectivity within the hippocampal network, thus shaping hippocampal function throughout development.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Animais , Camundongos , Expressão Gênica , Redes Reguladoras de Genes/genética , Hipocampo
8.
J Alzheimers Dis ; 98(2): 671-689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427479

RESUMO

Background: Alzheimer's disease (AD) is the most prevalent neurological disorder worldwide, affecting approximately 24 million individuals. Despite more than a century of research on AD, its pathophysiology is still not fully understood. Objective: Recently, genetic studies of AD have focused on analyzing the general expression profile by employing high-throughput genomic techniques such as microarrays. Current research has leveraged bioinformatics advancements in genetic science to build upon previous efforts. Methods: Data from the GSE118553 dataset used in this investigation, and the analyses carried out using programs such as Limma and BioBase. Differentially expressed genes (DEGs) and differentially expressed microRNAs (DEmiRs) associated with AD identified in the studied areas of the brain. Target genes of the DEmiRs identified using the MultiMiR package. Gene ontology (GO) completed using the Enrichr website, and the protein-protein interaction (PPI) network for these genes drawn using STRING and Cytoscape software. Results: The findings introduced DEGs including CTNNB1, PAK2, MAP2K1, PNPLA6, IGF1R, FOXL2, DKK3, LAMA4, PABPN1, and GDPD5, and DEmiRs linked to AD (miR-106A, miR-1826, miR-1253, miR-10B, miR-18B, miR-101-2, miR-761, miR-199A1, miR-379 and miR-668), (miR-720, miR-218-2, miR-25, miR-602, miR-1226, miR-548K, miR-H1, miR-410, miR-548F2, miR-181A2), (miR-1470, miR-651, miR-544, miR-1826, miR-195, miR-610, miR-599, miR-323, miR-587 and miR-340), and (miR-1282, miR-1914, miR-642, miR-1323, miR-373, miR-323, miR-1322, miR-612, miR-606 and miR-758) in cerebellum, frontal cortex, temporal cortex, and entorhinal cortex, respectively. Conclusions: The majority of the genes and miRNAs identified by our findings may be employed as biomarkers for prediction, diagnosis, or therapy response monitoring.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Redes Reguladoras de Genes/genética , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , RNA Mensageiro/genética , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Proteína I de Ligação a Poli(A)/genética
9.
Genet Test Mol Biomarkers ; 28(4): 133-143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501698

RESUMO

Background: Sepsis is a complex clinical syndrome caused by a dysregulated host immune response to infection. This study aimed to identify a competing endogenous RNA (ceRNA) network that can greatly contribute to understanding the pathophysiological process of sepsis and determining sepsis biomarkers. Methods: The GSE100159, GSE65682, GSE167363, and GSE94717 datasets were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene coexpression network analysis was performed to find modules possibly involved in sepsis. A long noncoding RNA-microRNA-messenger RNA (lncRNA-miRNA-mRNA) network was constructed based on the findings. Single-cell analysis was performed. Human umbilical vein endothelial cells were treated with lipopolysaccharide (LPS) to create an in vitro model of sepsis for network verification. Reverse transcription-polymerase chain reaction, fluorescence in situ hybridization, and luciferase reporter genes were used to verify the bioinformatic analysis. Result: By integrating data from three GEO datasets, we successfully constructed a ceRNA network containing 18 lncRNAs, 7 miRNAs, and 94 mRNAs based on the ceRNA hypothesis. The lncRNA ZFAS1 was found to be highly expressed in LPS-stimulated endothelial cells and may thus play a role in endothelial cell injury. Univariate and multivariate Cox analyses showed that only SLC26A6 was an independent predictor of prognosis in sepsis. Overall, our findings indicated that the ZFAS1/hsa-miR-449c-5p/SLC26A6 ceRNA regulatory axis may play a role in the progression of sepsis. Conclusion: The sepsis ceRNA network, especially the ZFAS1/hsa-miR-449c-5p/SLC26A6 regulatory axis, is expected to reveal potential biomarkers and therapeutic targets for sepsis management.


Assuntos
Biomarcadores , Redes Reguladoras de Genes , Células Endoteliais da Veia Umbilical Humana , MicroRNAs , RNA Longo não Codificante , RNA Mensageiro , Sepse , Humanos , Sepse/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Redes Reguladoras de Genes/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biomarcadores/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Endoteliais/metabolismo , Biologia Computacional/métodos , Masculino , Perfilação da Expressão Gênica/métodos , Feminino , Prognóstico , Bases de Dados Genéticas , Regulação da Expressão Gênica/genética , Pessoa de Meia-Idade , Lipopolissacarídeos/farmacologia , 60414
10.
Cell Rep Methods ; 4(4): 100742, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38554701

RESUMO

The pathogenesis of Alzheimer disease (AD) involves complex gene regulatory changes across different cell types. To help decipher this complexity, we introduce single-cell Bayesian biclustering (scBC), a framework for identifying cell-specific gene network biomarkers in scRNA and snRNA-seq data. Through biclustering, scBC enables the analysis of perturbations in functional gene modules at the single-cell level. Applying the scBC framework to AD snRNA-seq data reveals the perturbations within gene modules across distinct cell groups and sheds light on gene-cell correlations during AD progression. Notably, our method helps to overcome common challenges in single-cell data analysis, including batch effects and dropout events. Incorporating prior knowledge further enables the framework to yield more biologically interpretable results. Comparative analyses on simulated and real-world datasets demonstrate the precision and robustness of our approach compared to other state-of-the-art biclustering methods. scBC holds potential for unraveling the mechanisms underlying polygenic diseases characterized by intricate gene coexpression patterns.


Assuntos
Doença de Alzheimer , Progressão da Doença , Análise de Célula Única , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Análise de Célula Única/métodos , Transcriptoma/genética , Análise por Conglomerados , Teorema de Bayes , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética
11.
NPJ Syst Biol Appl ; 10(1): 18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360881

RESUMO

A major challenge in precision oncology is to detect targetable cancer vulnerabilities in individual patients. Modeling high-throughput omics data in biological networks allows identifying key molecules and processes of tumorigenesis. Traditionally, network inference methods rely on many samples to contain sufficient information for learning, resulting in aggregate networks. However, to implement patient-tailored approaches in precision oncology, we need to interpret omics data at the level of individual patients. Several single-sample network inference methods have been developed that infer biological networks for an individual sample from bulk RNA-seq data. However, only a limited comparison of these methods has been made and many methods rely on 'normal tissue' samples as reference, which are not always available. Here, we conducted an evaluation of the single-sample network inference methods SSN, LIONESS, SWEET, iENA, CSN and SSPGI using transcriptomic profiles of lung and brain cancer cell lines from the CCLE database. The methods constructed functional gene networks with distinct network characteristics. Hub gene analyses revealed different degrees of subtype-specificity across methods. Single-sample networks were able to distinguish between tumor subtypes, as exemplified by node strength clustering, enrichment of known subtype-specific driver genes among hubs and differential node strength. We also showed that single-sample networks correlated better to other omics data from the same cell line as compared to aggregate networks. We conclude that single-sample network inference methods can reflect sample-specific biology when 'normal tissue' samples are absent and we point out peculiarities of each method.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Algoritmos , Medicina de Precisão , Redes Reguladoras de Genes/genética , Transcriptoma
12.
Adv Sci (Weinh) ; 11(16): e2308879, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353329

RESUMO

Recent developments in single-cell sequencing technology enable the acquisition of entire transcriptome data. Understanding the underlying mechanism and identifying the driving force of transcriptional regulation governing cell function directly from these data remains challenging. This study reconstructs a continuous vector field of the cell cycle based on discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium dynamic landscape-flux. It reveals that large fluctuations disrupt the global landscape and genetic perturbations alter landscape-flux, thus identifying key genes in maintaining cell cycle dynamics and predicting associated functional effects. Additionally, it quantifies the fundamental energy cost of the cell cycle initiation and unveils that sustaining the cell cycle requires curl flux and dissipation to maintain the oscillatory phase coherence. This study enables the inference of the cell cycle gene regulatory networks directly from the single-cell transcriptomic data, including the feedback mechanisms and interaction intensity. This provides a golden opportunity to experimentally verify the landscape-flux theory and also obtain its associated quantifications. It also offers a unique framework for combining the landscape-flux theory and single-cell high-through sequencing experiments for understanding the underlying mechanisms of the cell cycle and can be extended to other nonequilibrium biological processes, such as differentiation development and disease pathogenesis.


Assuntos
Ciclo Celular , Análise de Célula Única , Transcriptoma , Análise de Célula Única/métodos , Ciclo Celular/genética , Transcriptoma/genética , Redes Reguladoras de Genes/genética , Perfilação da Expressão Gênica/métodos , Humanos
13.
Metab Brain Dis ; 39(4): 577-587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305999

RESUMO

Atypical parkinsonism (AP) is a group of complex neurodegenerative disorders with marked clinical and pathophysiological heterogeneity. The use of systems biology tools may contribute to the characterization of hub-bottleneck genes, and the identification of its biological pathways to broaden the understanding of the bases of these disorders. A systematic search was performed on the DisGeNET database, which integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. The tools STRING 11.0 and Cytoscape 3.8.2 were used for analysis of protein-protein interaction (PPI) network. The PPI network topography analyses were performed using the CytoHubba 0.1 plugin for Cytoscape. The hub and bottleneck genes were inserted into 4 different sets on the InteractiveVenn. Additional functional enrichment analyses were performed to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology for a described set of genes. The systematic search in the DisGeNET database identified 485 genes involved with Atypical Parkinsonism. Superimposing these genes, we detected a total of 31 hub-bottleneck genes. Moreover, our functional enrichment analyses demonstrated the involvement of these hub-bottleneck genes in 3 major KEGG pathways. We identified 31 highly interconnected hub-bottleneck genes through a systems biology approach, which may play a key role in the pathogenesis of atypical parkinsonism. The functional enrichment analyses showed that these genes are involved in several biological processes and pathways, such as the glial cell development, glial cell activation and cognition, pathways were related to Alzheimer disease and Parkinson disease. As a hypothesis, we highlight as possible key genes for AP the MAPT (microtubule associated protein tau), APOE (apolipoprotein E), SNCA (synuclein alpha) and APP (amyloid beta precursor protein) genes.


Assuntos
Redes e Vias Metabólicas , Transtornos Parkinsonianos , Mapas de Interação de Proteínas , Biologia de Sistemas , Humanos , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Redes e Vias Metabólicas/genética , Mapas de Interação de Proteínas/genética , Redes Reguladoras de Genes/genética , Animais
14.
Hum Genomics ; 18(1): 16, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326874

RESUMO

BACKGROUND: Diabetes is a spectrum of metabolic diseases affecting millions of people worldwide. The loss of pancreatic ß-cell mass by either autoimmune destruction or apoptosis, in type 1-diabetes (T1D) and type 2-diabetes (T2D), respectively, represents a pathophysiological process leading to insulin deficiency. Therefore, therapeutic strategies focusing on restoring ß-cell mass and ß-cell insulin secretory capacity may impact disease management. This study took advantage of powerful integrative bioinformatic tools to scrutinize publicly available diabetes-associated gene expression data to unveil novel potential molecular targets associated with ß-cell dysfunction. METHODS: A comprehensive literature search for human studies on gene expression alterations in the pancreas associated with T1D and T2D was performed. A total of 6 studies were selected for data extraction and for bioinformatic analysis. Pathway enrichment analyses of differentially expressed genes (DEGs) were conducted, together with protein-protein interaction networks and the identification of potential transcription factors (TFs). For noncoding differentially expressed RNAs, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which exert regulatory activities associated with diabetes, identifying target genes and pathways regulated by these RNAs is fundamental for establishing a robust regulatory network. RESULTS: Comparisons of DEGs among the 6 studies showed 59 genes in common among 4 or more studies. Besides alterations in mRNA, it was possible to identify differentially expressed miRNA and lncRNA. Among the top transcription factors (TFs), HIPK2, KLF5, STAT1 and STAT3 emerged as potential regulators of the altered gene expression. Integrated analysis of protein-coding genes, miRNAs, and lncRNAs pointed out several pathways involved in metabolism, cell signaling, the immune system, cell adhesion, and interactions. Interestingly, the GABAergic synapse pathway emerged as the only common pathway to all datasets. CONCLUSIONS: This study demonstrated the power of bioinformatics tools in scrutinizing publicly available gene expression data, thereby revealing potential therapeutic targets like the GABAergic synapse pathway, which holds promise in modulating α-cells transdifferentiation into ß-cells.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Insulinas , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Redes Reguladoras de Genes/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Diabetes Mellitus Tipo 2/genética , Fatores de Transcrição/genética , Insulinas/genética , Biologia Computacional , Proteínas de Transporte/genética , Proteínas Serina-Treonina Quinases/genética
15.
PLoS Comput Biol ; 20(2): e1011867, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422161

RESUMO

Determining the general laws between evolution and development is a fundamental biological challenge. Developmental hourglasses have attracted increased attention as candidates for such laws, but the necessity of their emergence remains elusive. We conducted evolutionary simulations of developmental processes to confirm the emergence of the developmental hourglass and unveiled its establishment. We considered organisms consisting of cells containing identical gene networks that control morphogenesis and evolved them under selection pressure to induce more cell types. By computing the similarity between the spatial patterns of gene expression of two species that evolved from a common ancestor, a developmental hourglass was observed, that is, there was a correlation peak in the intermediate stage of development. The fraction of pleiotropic genes increased, whereas the variance in individuals decreased, consistent with previous experimental reports. Reduction of the unavoidable variance by initial or developmental noise, essential for survival, was achieved up to the hourglass bottleneck stage, followed by diversification in developmental processes, whose timing is controlled by the slow expression dynamics conserved among organisms sharing the hourglass. This study suggests why developmental hourglasses are observed within a certain phylogenetic range of species.


Assuntos
Família , Teoria de Sistemas , Humanos , Filogenia , Redes Reguladoras de Genes/genética , Morfogênese/genética , Evolução Biológica
16.
J Psychiatr Res ; 171: 316-324, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340698

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a heterogeneous mental disorder, and accompanying anxiety symptoms, known as anxious depression (AD), are the most common subtype. However, the pathophysiology of AD may be distinct in depressed patients without anxiety (NAD) and remains unknown. This study aimed to investigate the relationship between functional connectivity and peripheral transcriptional profiles in patients with AD and NAD. METHODS: Functional imaging data were collected to identify differences in functional networks among patients with AD (n = 66), patients with NAD (n = 115), and healthy controls (HC, n = 200). The peripheral transcriptional data were clustered as co-expression modules, and their associations with AD, AND, and HC were analyzed. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses of the genes in the significant module were performed. Correlation analysis was performed to identify functional network-associated gene co-expression modules. RESULTS: A network was identified which consisted of 23 nodes and 28 edges that were significantly different among three sample groups. The regions of the network were located in temporal and occipital lobe. Two gene co-expression modules were shown to be associated with NAD, and one of which was correlated with the disrupted network in the AD group. The biological function of this module was enriched in immune regulation pathways. CONCLUSION: The results suggested that immune-related mechanisms were associated with functional networks in AD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/complicações , Depressão/genética , NAD/genética , Encéfalo/diagnóstico por imagem , Redes Reguladoras de Genes/genética , Perfilação da Expressão Gênica
17.
Mol Plant ; 17(3): 438-459, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310351

RESUMO

The spike architecture of wheat plays a crucial role in determining grain number, making it a key trait for optimization in wheat breeding programs. In this study, we used a multi-omic approach to analyze the transcriptome and epigenome profiles of the young spike at eight developmental stages, revealing coordinated changes in chromatin accessibility and H3K27me3 abundance during the flowering transition. We constructed a core transcriptional regulatory network (TRN) that drives wheat spike formation and experimentally validated a multi-layer regulatory module involving TaSPL15, TaAGLG1, and TaFUL2. By integrating the TRN with genome-wide association studies, we identified 227 transcription factors, including 42 with known functions and 185 with unknown functions. Further investigation of 61 novel transcription factors using multiple homozygous mutant lines revealed 36 transcription factors that regulate spike architecture or flowering time, such as TaMYC2-A1, TaMYB30-A1, and TaWRKY37-A1. Of particular interest, TaMYB30-A1, downstream of and repressed by WFZP, was found to regulate fertile spikelet number. Notably, the excellent haplotype of TaMYB30-A1, which contains a C allele at the WFZP binding site, was enriched during wheat breeding improvement in China, leading to improved agronomic traits. Finally, we constructed a free and open access Wheat Spike Multi-Omic Database (http://39.98.48.156:8800/#/). Our study identifies novel and high-confidence regulators and offers an effective strategy for dissecting the genetic basis of wheat spike development, with practical value for wheat breeding.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Melhoramento Vegetal , Redes Reguladoras de Genes/genética , Multiômica , Fatores de Transcrição/genética
18.
mSystems ; 9(3): e0087723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38349171

RESUMO

Since the 1980s, the development of new drug classes for the treatment of multidrug-resistant Klebsiella pneumoniae has become limited, highlighting the urgent need for novel antibiotics. To address this challenge, this study aimed to explore the synergistic interactions between chemical compounds and representative antibiotics, such as carbapenem and colistin. The primary objective of this study was not only to mitigate the adverse impact of multidrug-resistant K. pneumoniae on public health but also to establish a sustainable balance among humans, animals, and the environment. Phenotypical measurements were conducted using the broth microdilution technique to determine the drug sensitivity of bacterial strains. Additionally, a genotypical approach was employed, involving traditional RNA sequencing analysis to identify differentially expressed genes and the computational ANNOgesic tool to detect noncoding RNAs. This study revealed the existence of various pathways and regulatory RNA elements that form a functional network. These pathways, characterized by the expression of specific genes, contribute to the combined treatment effect and bacterial survival strategies. The connections between pathways are facilitated by regulatory RNA elements that respond to environmental changes. These findings suggest an adaptive response of bacteria to harsh environmental conditions.IMPORTANCENoncoding RNAs were identified as key players in post-transcriptional regulation. Moreover, this study predicted the presence of novel small regulatory RNAs that interact with target genes, as well as the involvement of riboswitches and RNA thermometers in conjunction with associated genes. These findings will contribute to the discovery of potential antimicrobial therapeutic candidates. Overall, this study offers valuable insights into the synergistic effects of chemical compounds and antibiotics, highlighting the role of regulatory RNA elements in bacterial response, and survival strategies. The identification of novel noncoding RNAs and their interactions with target genes, riboswitches, and RNA thermometers holds promise for the development of antimicrobial therapies.


Assuntos
Klebsiella pneumoniae , Riboswitch , Animais , Humanos , Klebsiella pneumoniae/genética , Redes Reguladoras de Genes/genética , Antibacterianos/farmacologia , Colistina/metabolismo
19.
Comput Biol Med ; 171: 108068, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354497

RESUMO

The availability of large-scale epigenomic data from various cell types and conditions has yielded valuable insights for evaluating and learning features predicting the co-binding of transcription factors (TF). However, prior attempts to develop models predicting motif co-occurrence lacked scalability for globally analyzing any motif combination or making cross-species predictions. Moreover, mapping co-regulatory modules (CRM) to gene regulatory networks (GRN) is crucial for understanding underlying function. Currently, no comprehensive pipeline exists for large-scale, rapid, and accurate CRM and GRN identification. In this study, we analyzed and evaluated different TF binding characteristics facilitating biologically significant co-binding to identify all potential clusters of co-binding TFs. We curated the UniBind database, containing ChIP-Seq data from over 1983 samples and 232 TFs, and implemented two machine learning models to predict CRMs and the potential regulatory networks they operate on. Two machine learning models, Convolution Neural Networks (CNN) and Random Forest Classifier(RFC), used to predict co-binding between TFs, were compared using precision-recall Receiver Operating Characteristic (ROC) curves. CNN outperformed RFC (AUC 0.94 vs. 0.88) and achieved higher F1 scores (0.938 vs. 0.872). The CRMs generated by the clustering algorithm were validated against ChipAtlas and MCOT, revealing additional motifs forming CRMs. We predicted 200k CRMs for 50k+ human genes, validated against recent CRM prediction methods with 100% overlap. Further, we narrowed our focus to study heart-related regulatory motifs, filtering the generated CRMs to report 1784 Cardiac CRMs containing at least four cardiac TFs. Identified cardiac CRMs revealed potential novel regulators like ARID3A and RXRB for SCAD, including known TFs like PPARG for F11R. Our findings highlight the importance of the NKX family of transcription factors in cardiac development and provide potential targets for further investigation in cardiac disease.


Assuntos
Epigenômica , Redes Reguladoras de Genes , Humanos , Redes Reguladoras de Genes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Algoritmos , Coração , Proteínas de Ligação a DNA/genética
20.
J Assist Reprod Genet ; 41(3): 727-737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38294620

RESUMO

PURPOSE: To identify potential biomarkers and the molecular mechanisms associated with repeated implantation failure (RIF), three microarray datasets, GSE71331 (lncRNA + mRNA), GSE111974 (lncRNA + mRNA), and GSE71332 (miRNA), were retrieved from the Gene Expression Omnibus (GEO) database. METHODS: The differentially expressed mRNAs (DEMs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs) between normal control samples (C group) and RIF samples (RIF group) were identified, and then a module partition analysis was performed based on weighted correlation network analysis (WGCNA). Following enrichment analysis of the genes, the lncRNA-miRNA-mRNA interactions (ceRNA) were examined. The mRNAs in the ceRNA network were evaluated using the GSE58144 dataset. Finally, the key RNAs were verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: Fifty-three DEmiRNAs, 327 DEMs, and 13 DElncRNAs were identified between the C and RIF groups. According to WGCNA, the magenta module was positively correlated with RIF disease status. The lncRNA-mRNA interaction analysis based on genes in the magenta module revealed the intersecting lncRNAs, including peptidylprolyl isomerase E-like pseudogene (PPIEL) and the testis-specific transcript, y-Linked 14 (TTTY14); these lncRNAs are mainly involved in functions, such as plasma membrane organization. The ceRNA network analysis revealed several interactions, such as TTTY14-miR-6088-semaphorin 5 A (SEMA5A). Finally, SEMA5A and the zinc finger protein 555 (ZNF555) were identified to be significantly upregulated in the RIF group compared with those in the C group in the GSE58144 dataset. The RT-qPCR results aligned with the above results. CONCLUSIONS: Overall, TTTY14, ZNF555, SEMA5A, PPIEL, and miR-6088 could serve as novel biomarkers of RIF.


Assuntos
MicroRNAs , RNA Longo não Codificante , Semaforinas , Masculino , Humanos , RNA Longo não Codificante/genética , Corantes de Rosanilina , Redes Reguladoras de Genes/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Semaforinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...